
LA-UR-21-23028
Approved for public release; distribution is unlimited.

Title: Charged Particle Transport in LUMOS

Author(s): Norris, Edward Thomas

Intended for: Report

Issued: 2021-03-30

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

LA-UR-XXXXX
Approved for Public Release
Distribution is Unlimited

Charged Particle Transport in LUMOS

Edward T. Norris
Los Alamos National Laboratory†

enorris@lanl.gov
March 2021

†Los Alamos National Laboratory is operated by Triad National Security, LLC under contract to the NNSA.

Contents

1 Introduction 1

2 Particle Interactions with Matter 1
2.1 Energy Coupling . 2
2.2 Mass Coupling . 3
2.3 Momentum Coupling . 3

3 Implementation 3

4 Source Methods 5
4.1 Physics Sources . 7
4.2 Static Sources . 7

5 Transport Methods 7
5.1 Void Stopping Power . 10
5.2 Simple Stopping Power . 10
5.3 Trubnikov Stopping Power . 11
5.4 Li-Petrasso Stopping Power . 11
5.5 Tabular Stopping Power . 12

6 Rendering and Analysis 13

7 Test Suite 14

8 Future Work 14

i

1 Introduction

Charged particle physics, implicit Monte Carlo (IMC) radiation transport, and Sn radiation transport were
recently added to the code LUMOS developed by the Lagrangian Applications Project at Los Alamos Na-
tional Laboratory. This advancement is part of an effort to increase LUMOS’s applicability across a wide
variety of problems of interest to the Laboratory including application to inertial confinement fusion (ICF).
ICF implosion physics is of interest to the Lagrangian Applications Project because 1) ICF fusion research
is a critical mission driver at the laboratory and 2) ICF fusion is a key research area for students and new
staff members during the on-boarding process.

Historically, problems of interest to the LUMOS user community have needed zones hundreds of mi-
crometers to millimeters across with shocks occasionally driving zone sizes to tens of micrometers. In these
types of problems, depositing all of the charged particle’s energy into the zone it was created in was a good
assumption since particles rarely crossed zones. As computer hardware has advanced, some problem classes
now measure zone size in only tens of micrometers across. In ICF implosion problems, for example, the
entire ICF capsule may only measure a few millimeters wide. As zone sizes shrink, the assumption that
energy can be deposited locally breaks down and charged particle transport becomes necessary to accurately
capture the heating in the system.

Charged particles are created by a range of physical phenomena from supernovae to thermonuclear
burn in an ICF capsule. As a charged particle moves through space, it accelerates due to the Coulomb
force from charged species around it, attracting and repelling charged species in its surroundings. As the
species displace, they gain momentum, resulting in an equivalent loss in momentum of the charged particle.
As the particle loses momentum, the relative strength of its interaction with surrounding species changes.
Section 2 describes the phenomena by which this energy exchange happens and the rate at which the particle
approaches equilibrium with the environment (referred to as the relaxation rate).

The transport of charged particles through space and their interaction with fields and matter is of
academic interest as well. Charged particle transport has been implemented in at least three academic
codes: FLASH, DRACO, and PETE. FLASH and DRACO both implement charged particle transport using
Monte Carlo while PETE uses a discretized transport algorithm similar to an Sn transport code.

The University of Chicago’s Flash Center has developed a code, FLASH, that implements charged particle
transport inside a radiation hydrodynamics code [6, 11]. FLASH is used primarily by the astrophysics
community but has been used to study ICF relevant regimes for development of OMEGA diagnostics [10].
Development of charged particle physics in FLASH evidences that adding this capability to LUMOS is of
academic interest and will open LUMOS to new regimes of interesting problems.

The University of Wisconsin at Madison has developed the radhydro code DRACO for direct drive
ICF implosion calculations of OMEGA that has a Monte Carlo charged particle transport package for
tracking alpha particles. DRACO uses a continuous slowing-down equation implemented in LUMOS (analytic
transport with the Li correction) [13].

The rad-hydro code PETE is developed by the Czech Technical University in Prague [14] that couples
rad-hydro to charged particle transport on a discretized grid. PETE was used to calculate electron preheat at
the OMEGA laser facility [15]. X-ray Thompson scattering measurements, velocity inferometry, and optical
pyrometry were used to validate the computational predictions.

The remainder of this report summarizes the theory of charged particle physics and its implementation
in LUMOS. In this report, charged particle transport refers strictly to the transport while the broader term
charged particle physics is used to refer to the generation and transport of charged particles as well as
coupling to matter and other phenomena of interest.

2 Particle Interactions with Matter

As charged particles move through matter, they interact primarily through coulomb interactions, and deposit
energy in the surrounding matter until the particle equilibriates with the surrounding matter. This process
is known as relaxation. The relaxation process is described by dE/dx, the rate at which the particle loses
energy per distance traveled. This rate is typically referred to as the stopping power. In some theories, the
stopping power is more easily described as the energy loss rate per time, dE/dt, or as a change in velocity,
dv/dx or dv/dt.

1

The particle’s interactions with matter give rise to three coupling mechanisms between the particles and
matter: energy coupling, mass coupling, and momentum coupling. Each coupling mechanism can be turned
on or off independently of other coupling mechanisms for each transport node by setting energy transfer

= 1, mass transfer = 1, or momentum transfer = 1 under the transport node.

2.1 Energy Coupling

The stopping power depends on many parameters describing both the particle of interest and the plasma
it travels through, but the greatest factor influencing the stopping power is the speed of the charged par-
ticle relative to the plasma temperature. The momentum transfer between the charged particle and its
environment depends on the time a changed particle spends in the vicinity of a particular plasma particle.

In a quasi-neutral plasma at thermal equilibrium, the electrons move far faster than the ions. For
reference, a 2.0 keV electron travels at 2.7× 107 m/s while a deuteron with the same energy only moves at
4.4× 105 m/s and a triton moves at 3.6× 105 m/s. In comparison, a 3.5 MeV α particle travels at 1.3× 107

m/s. Since the α particle speed is much closer to the electron speed, the particle-electron interaction is much
stronger than the particle-ion interaction.

As the particle continues to travel, exchanging energy with the electrons around it, the particle slows
down; as the particle slows, the electrons appear to move faster in the particle’s frame of reference. As the
difference in particle speed to electron speed increases, the two decouple with respect to their momentum
transfer. Eventually, the particle loses enough energy that its speed approaches the speed of a typical ion.
When this happens, the particle-ion interaction increases greatly. This results in an energy exchange rate
notionally distributed like Figure 1 as the particle travels. As the charged particles travels through space
exchanging momentum with the surrounding environment, the local environment heats up. As the plasma
heats, the stopping power changes but whether the stopping power increases, decreases, or remains relatively
constant depends on the particle and plasma parameters.

Figure 1: A notional diagram of how the dominant interaction mode changes as the particle slows down.
At high energy (1), the particle interacts primarily with electrons but as it loses energy (2), the electron
interaction weakens and the ion interaction strengthens. Eventually, the particle thermalizes (3) and joins
the background environment.

The total energy deposited into a zone, Edep, is computed using Equation 1 where E0 is the particle’s
energy at the beginning of a (sub)cycle and E is its energy at the end of the (sub)cycle. Typically, a particle
is considered thermalized once its energy reduces to the ion temperature. All energy is deposited into the
zone containing the particle at the end of the (sub)cycle.

Edep =

{
E0 if thermalized

E0 − E otherwise
(1)

The total energy deposited into the material is then split into Ei and Ee, the energy deposition into
the ions and electrons respectively. The ion-electron split is determined by the user-defined stopping power.
Some stopping power models provide a total stopping power and fi, the fraction of energy depositied to ions,
while other models split provide the stopping power for ions and electrons separately.

2

When energy is deposited into a multi-material zone, the energy is split using material volume fraction.
In a zone containing M materials, the energy deposited into the m material is given by Equation 2 where V
is the volume of a given material in the zone of interest.

Em = Edep
Vm∑M
i Vi

(2)

2.2 Mass Coupling

When a particle thermalizes, its mass is deposited into the zone bounding it at the time of thermalization
and the zone’s isotopic composition is updated. Since each Monte Carlo particle represents a single isotopic
specie, the number of isotopes deposited, Idep is equal to the particle’s weight, ω.

Idep = ω (3)

Multimaterial zones handle the isotopic update the same way they handle the energy deposition, by
multiplying by the material volume fraction. The number of thermal particles deposited into a zone is given
by Equation 4

Im = ω
Vm∑M
i Vi

(4)

The total mass of any zone is then computed using Equation 5 where Ai is the atomic weight of isotope
i and Ni is the number of those isotopes present.

m =

n∑
i

AiNi (5)

2.3 Momentum Coupling

As a particle slows down, it loses momentum to its surroundings. In bulk plasma regions, momentum
transfer is not expected to be significant since the fusion process is isotropic. On average, the large number
of reactions will cancel out and result in no net momentum transfer. However, momentum transfer may be
non-negligible where the plasma comes into contact with the ICF capsule or other materials. In these cases,
the fusion alpha particles may escape the plasma into the capsule wall; since all alphas hitting the wall will
be traveling in a similar direction, they will transfer net momentum.

The momentum transfer routine is taken directly from the ejecta package. Ultimately, momentum man-
ifests as a change in the point velocities of each point bounding the zone. The momentum deposited at any
point, pp, is the sum of the momentum of all particles, pi, weighted by the fraction of momentum deposited
from any particle to that point, wi

pp =

N∑
1

piwi (6)

Once the momentum deposition has been attributed to points, the point centered velocity, vp is computed
by dividing by point centered momentum, pp by the corner mass, mp.

vp =
pp
mp

(7)

Dividing by the corner mass rather than the zonal mass ensures that momentum conservation accounts for
the motion of other zones dragged along by the zone gaining momentum. Node velocity is not a material
property so whether a zone is a multi-material zone or not does not impact the momentum transfer.

3 Implementation

The charged particle physics package is almost completely self contained; relevant files reside in the LUMOS
folder except for some useful utility functions; these utility functions include uniform tetrahedron point

3

Table 1: LUMOS Changes Supporting Charged Particle Physics

Location File Change Made

LUMOS/... multiple New files
DELFI/RobustIntersect/ sort utils.f90 Implements binary bound
DELFI/Particle/Base/ get rand pt in side.g90 Samples a side uniformly
DELFI/Particle/Base/ PtclClass.dic Generalizes functionality
DELFI/ config.con Adds new .g90 file
DELFI/Delf physcons.dic Adds new unit conversions
ION/isotopes/ Isotopes.dic GetZoneAbarZbar response
ION/isotopes/ Isotopes.g GetZoneAbarZbar response

sampling and new physics constants. LUMOS is a new top-level directory in LUMOS devoted the charged
particle physics and other advanced physics that will be implemented in the future. A comprehensive list of
all files changed in support of charged particle physics is given in Table 1. If the charged particle physics
package were to be removed from LUMOS, none of the modified files in DELFI or ION would need to be
reverted.

The charged particle physics package can run independently of any other physics package in LUMOS.
The cpt 1d void case in the validation suite (see Section 7) demonstrates that particles can traverse the
mesh without hydrodynamics or any other physics enabled.

The implementation of charged particle physics builds upon the LUMOS particle methods already imple-
mented for tracer particles and ejecta. The ChargedParticle class inherits from the FParticle class which,
in turn, inherits from the RootPtcl class. A UML diagram covering the key classes is given in Figure 2.
Conceptually, the RootPtcl class represents an abstract point in three dimensional space that can locate
which mesh side bounds it.

Figure 2: UML diagram showing the inheritance structure of charged particle physics classes and their
composition into the database.

Two classes, BParticle and FParticle inherit from RootPtcl. BParticle objects represent points
conceptually bound to either the mesh or a material. BParticles underpin the tracer particle machinery
used for diagnostics and user output and do not represent physical particles. Physical particles are imple-
mented using FParticle objects which represent points free to move independent of the mesh or materials.
Currently, two classes of particles extend FParticle: ejecta particles via the EParticle class and charged
particles via the ChargedParticle class. The ChargedParticle class extends FParticle by adding the
variables listed in Table 2 (note that Table 2 includes only integer and real variables, not database nodes).
Note that the LUMOS variable kkptcll is the size of the relevant particle arrays (on a given processor).

4

Table 2: ChargedParticle Extensions to FParticle

Variable Type Dimension Notes

bank size init int 1 Initial kkptcll value
cpt debug int 1 Enables debug output
energy lost real 1 Total energy of lost particles
ptcl handle int 1 Handle to this node
ptcls gen int 1 Particles generated on this processor
ptcl id int kkptcll Unique id number
ptcl mass real kkptcll Mass in LUMOS units
ptcl zaid int kkptcll SZA
ptcl charge real kkptcll Charge in LUMOS units
ptcl energy real kkptcll Energy in LUMOS units
ptcl ulocal real kk3ll × kkptcll Local velocity
ptcl weight real kkptcll Weight
ptcl f real kkptcll fi
ptcl mev real kkptcll Energy in MeV
ptcl dedx real kkptcll dE/dx in MeV/cm
ptcl dedt real kkptcll dE/dt in MeV/sh
ptcl eloss real kkptcll E/E0

ptcl pe0 int kkptcll Cycle initial processor
ptcl pe1 int kkptcll Cycle final processor
ptcl pex int kkptcll 1 if particle exchanged processors
ptcl z weight real kkzll Particle weight per zone
ptcl z count real kkzll MC particles per zone
ptcl z energy real kkzll Particle energy per zone
kkdtrecll int 1 Used by dt recommendation
kkdtrecl int 1 Used by dt recommendation

When needed, this size is automatically increased to accommodate more particles.
Charged particle physics is included in LUMOS at runtime if a user specifies at least one /glob-

al/mesh/charged/mc node. This node responds to the ChargedPtclPhys broadcast made in the LUMOS
driver and makes two broadcasts of its own: ChargedPtclSource and ChargedPtclTransport. A larger picture
of the implementation is given in Figure 3. This two-phase physics cycle in which particles are spawned by
one broadcast and then transported by a second was taken directly from the ejecta package.

The charged particle physics package relies on the massively parallel generation of random numbers for its
Monte Carlo implementation. The random number generation is performed by the MCNP random number
generator [12]. This generator is accessed by including the mcnp random module in a function; once included,
access to the rang() function will be granted which returns a uniform random distribution in the range [0, 1).

4 Source Methods

Particles are sourced in three steps. The first step computes the number of physical particles generated
during the (sub)cycle and the number of Monte Carlo particles sampled from the physical population. In
the second step, the size of each particle array is incremented if necessary. Finally, the particles are sampled
and values are assigned to each of their parameters (mass, charge, energy, etc.).

The most challenging aspect of computing the source is the calculation of the particle weights. In typical
problems of interest, the number of charged particles in the physical problem at any given moment will be
on the order of 1010 or far greater. With the computational hardware available, direct simulation of such a
large population is computationally infeasible. Instead, the physical population is sampled and each Monte
Carlo particle is assumed to be representative of a set of many physical particles. The number of particles
represented by a particular Monte Carlo particle is the particle’s weight.

5

Figure 3: A high level overview of the charged particle physics code flow as implemented in LUMOS. The
responses to the source, transport step, and energy deposition broadcasts are not shown.

In a steady state problem, the true weight of each Monte Carlo particle does not need to be known
by the code at run time, only the probability with which each source particle was generated relative to all
others. The true weight for the problem can then be computed after the simulation runs and used as a
multiplier for all output variables from the simulation. However, this simplification cannot be made in a
dynamic simulation. In a dynamic simulation, the rate of particle production at any point in (phase)space
may change so the weight of each particle must be explicitly calculated. An additional complication is that
the duration of each time step is not guaranteed to be the same as the step before or after it.

The current implementation of charged particle physics in LUMOS requires a user specified weight rate

parameter under .../charged ptcls/real rate. The number of physical particles, ξ produced over a time
step of size ∆t is simply computed as

ξ = ξ̇∆t (8)

where ξ̇ is the user specified weight rate parameter.
Once the number of physical particles is known, the number of Monte Carlo particles that are actually

generated is determined. The user may specify the minimum number of particles to generate (on a given
PE) per cycle, Nmin. The user may also specify a preferred particle weight, ωP . Finally, the user may
enable a load balancing correction, L. If the load balancing correction is enabled, the source generation
on a processor will attempt to generated extra particles if other processors are currently tracking more
particles. Since each particle step takes approximately the same amount of time, imbalances in the number
of particles being tracked on each processor are expected to lead to performance losses while MPI is waiting
to synchronize. (MPI synchronization is required before particles can transfer between processors.) The load
balancing correction, L is the number of extra particles needed for the current processor to have as many
particles as the processor with the maximum number of particles computed as

L = max
PEs

(φi)− φ (9)

where φi is the number of particles on processor i and φ is the number of particles on this processor. The
recommended number of particles, Nrec is then simply the maximum of each recommendation:

Nrec = max (Nmin, ξ/ωP , L) . (10)

The final number of Monte Carlo particles produced this time step, N is then computed by

N = min (Nrec, Nmax) (11)

6

where Nmax is the user specified maximum number of particles allowable per time step.
Because all particles are sampled with equal probability, each has the same weight. The weight of each

particle, ω, is simply

ω =
ξ

N
. (12)

After LUMOS finishes computing the number of Monte Carlo particles to sample, it begins sampling
them. Particles can be sampled from very simple static sources defined by the user or by more sophisticated
physics models. Either way, the source is responsible for defining the position, mass, velocity, charge, and
SZA of each particle generated.

4.1 Physics Sources

Physics sources in LUMOS are sources that produce particles based on a model driven by physical phenom-
ena. Currently, only one such physics source exists in LUMOS. The physics source estimates the total alpha
particle production in an ICF capsule using a well known approximation [5] of the reaction rate, σv

σv = 3.68× 10−12T
−2/3
i e−19.94T

−1/3
i (13)

where Ti is the ion temperature in keV and σv is in cm3/sec. Alpha particles at 3.5 MeV are sampled
uniformly throughout each zone and assumed to be isotropic in angle. This capability enables high fidelity
modeling of the alpha heating phenomenon inside an ICF capsule as well as simple alpha diagnostics. This
model does not deplete the reactants so it is only valid for very low efficiency capsules.

4.2 Static Sources

Users may specify static particle sources to model external sources, such as incoming beams, or to mock up
more complex physics models that are not yet available. Particle position can be specified as a single point
in space, sampled from a disk, or sampled from zones in the mesh. When sampled from zones in the mesh,
zones may be weighted by any zonal quantity to control how charged particles are initially distributed.

Particle velocity is determined by specifying each particle’s energy and initial direction of travel. The
energy can be set to a particular value in MeV, sampled from a group structure, or sampled from one of
a few available analytic models. The direction can be initialized to either a constant direction (ie a mono-
directional beam) or sampled isotropically. Once the initial particle energy, E, and unit direction, Ω̂, are
known, the initial velocity, v is computed using Equation 14 where m is the mass of the particle.

v = Ω̂

√
2E

m
(14)

Each Monte Carlo particle must be assigned an SZA that identifies the isotopic composition of the physical
particles it represents. The SZA specifies the isotope of the charged particle as S × 1000000 +Z × 1000 +A
where S is the metastable state of the isotope, Z is the number of protons and A is the number of nucleons
in the isotope. For example, Al-27 would be specified as ”13027,” an alpha particle would be specified as
”2004,” and a free proton is specified with ”1001.” Electrons may be specified with the special SZA ”-1.” The
user must either specify a particular SZA for a source or a list of SZAs from which particles will be sampled
randomly. The mass and charge of each particle can be determined from the particle’s SZA identifier using
NDI data or specified explicitly by the user.

5 Transport Methods

In the context of this report, the transport model is the computational model used to advance the position,
velocity, and energy of a particle over a single time step. During each physics cycle, the code shown in
Listing 1 executes. The ChargedPtclTransportStep subroutine, whose code is shown in Listing 2 is the
subroutine responsible for the implementation of the transport model. The rest of the physics step is needed
for subcycling control and the energy deposition in the materials. Each transport model is fundamentally

7

responsible for four steps: 1) Update the particle position, velocity, and energy; 2) Attribute the energy loss
to ions and electrons; 3) determine whether a particle has thermalized; and 4) compute and store variables
needed for subsequent steps.

The charged particle package inherits from the Dtrecbase class which gives it the ability to limit the
global time step. One way to limit the time step is such that no particle crosses more than half of a zone
per time step. The time to cross half a zone is

∆tlim =
Dzone

2vα
(15)

where Dzone is the effective zone width and vα is the speed of the particle relative to the background material.
The effective zone width is an approximation of the distance a particle must travel to cross a given zone and
computed as

Dzone = V
1/d
proj (16)

where Vproj is the projected volume of the zone. The projected volume is the the d-D volume of a zone
projected onto the computational mesh. In 2-D the projected volume is the area of a zone and in 1-D is
the line segment length. This approximation does not account for the zone’s aspect ratio so is only valid for
zones with a high aspect ratio, particularly if sharp gradients exist between zones.

During each cycle the code computes a ∆t duration (dt in the code listings) beyond which the transport
may be inconsistent because a particle travels far relative to the size of the zone bounding it. If the user
has specified that subcycling be used, each subcycle has a smaller timestep than ∆t. If subcycling is not
specified, this value is passed on the the dt-recommendation machinery which limits the next global time
step (dtg in the code listings).

Listing 1: ChargedPtclTransport subroutine

SUBROUTINE ChargedPtclTransport (. . .)

d = DIMENSIONS

IF (subcyc l e)
DO f o r p a r t i c l e i

IF (PARTICLE IS NULL) CYCLE
IF (PARTICLE OFF MESH) CYCLE

V = COMPUTE ZONE VOLUME
spd = COMPUTE PTCL SPEED
dtl im (i) = Vˆ(1/d)/(2∗ spd)

ENDDO
dt = MIN(dtlim , charged ptc l dt max)

substeps = CEILING(dtg /dt)
GLOBAL MAX(substeps)
dt = dtg / substeps

DO substeps
BROADCAST ChargedPtclTransportStep

ENDDO
ELSE

BROADCAST ChargedPtclTransportStep
CALL ChargedPtclTransportDtrec

ENDIF

CALL ChargedPtc lTransportStats
CALL ChargedPtclEnergyDep

8

END SUBROUTINE

Listing 2: ChargedPtclTransportStep subroutine

SUBROUTINE ChargedPtclTransportStep (. . .)

COMPUTE VARIABLES

DO p a r t i c l e i
COMPUTE DEDX
UPDATE

ENDDO

SAVE OUTPUT VARS

CALL removeNullChargedPtcls
BROADCAST ProjectFPtc l
CALL Ptcl walk wrap
CALL P t c l g e t x b

END SUBROUTINE

Each cycle, each particle is advanced by the transport model. Each transport node in the database has
a suite of physics options that can be enabled to give fine-grain control over how particles advance. The
primary interaction mechanism between the particles and the plasma is the continuous small-angle scatters
due to the Coulombic force between the charged particle and the thermal plasma ions.

The continuous Coulombic scatter of charged particles is captured by a stopping power model. The
stopping power model computes an average energy loss per distance or average energy loss per time which
is used to compute the energy of the particle over the timestep. A number of stopping power models are
available; the different stopping power models are described in further detail in later sections.

Each model has a thermalization criteria that, once reached, signals to the code that the particle should
no longer be tracked. When the particle thermalizes, its energy is immediately deposited into whichever
zone the particle resides in at the end of the (sub)cycle. Thermalized particles are removed by setting their
kptcltyp value to 0. The memory consumed by thermalized particles can be reclaimed by the system or
reallocated to new particles in the future. If the user has requested tracking particles off the mesh, those
particles will behave as if they were being transported through a void material.

The particle is assumed to exhibit exponential energy profile over a given time step

E(t) = E0e
−βt (17)

which can be differentiated and solved for the unknown exponential term, β, when t = 0

dE(t)

dt
= −βE0e

−βt (18)

βt=0 =
−dE/dt
E0

(19)

The energy loss with respect to time, dE/dt can be approximated as the stopping power, dE/dx, multiplied
by the particle velocity.

The velocity at the end of the time step is assumed to maintain its original direction vector and is updated
by recomputing its magnitude from energy using E = 1/2mv2.

v =
v0

|v0|

√
2E

m
(20)

9

The final position of the particle is computed by integrating the velocity of the time step.

r(t) = r0 +

∫ ∆t

0

v(t)dt

= r0 +
v0

|v0|

√
2

m

∫ ∆t

0

√
E0e−βtdt

= r0 + v0
2

β

[
1−
√
e−β∆t

] (21)

The solution for β given in Eq. 19 is inserted into Eq. 21 to give the particle position as a function of the
time during the timestep with no information other than the stopping power and particle initial state at the
beginning of the timestep.

r(t) = r0 − v0
2E0

dE/dt

[
1−

√
e(dE/dt)(t/E0)

]
(22)

5.1 Void Stopping Power

When the user specifies the void stopping power model, all materials are treated as void. This transport
model is useful for debugging purposes and is not intended for production use. Note that particles will still
exhibit Lagrangian motion with the mesh and advect properly when using this model.

When all materials are treated as void, the stopping power, and hence β, is zero which results in a zero
division by zero case in Eq. 22. Therefore, this stopping power model requires special handling to use the
asymptotic limit of Eq 22 as dE/dt→ 0. The asymptotic limits when the stopping power vanishes effectively
gives rise to the transport system given in Eq. 23.

r(t) = r0 + v0t

v(t) = v0

E(t) = E0

(23)

The split between ions and electrons is undefined since no energy is deposited. To avoid problems
rendering and post-processing, 1.0 is stored but should be ignored. No thermalization check is performed;
all particles continue to be tracked unless they exit the mesh.

5.2 Simple Stopping Power

The simple stopping power model uses an analytic expression given by Kirkpatrick [2] based on earlier
results of Cooper and Evans [3]. This model is nominally valid in hot DT plasmas found in ICF applications.
The fraction of energy deposited into the DT plasma, F , is taken to be

F = 1− e−ρR/λ (24)

where ρ is the plasma density, R is the distance traveled through the plasma, and λ is a characteristic range
for the charged particle. The characteristic range is based on an approximate fit by Cooper and Evans:

λ = 0.03Te [1− 0.24 ln(1 + Te)]

[
1 + 0.37 ln

(
1 + ρ

1 + 0.01T 2
e

)]
(25)

where Te is the electron temperature in keV. The expression given for λ is only valid for hot DT plasmas in
a limited density regime. Outside the region of validity, λ may become negative, in such regions, λ is floored
at zero. When λ is floored to zero, F is equal to one, which causes the particle to instantly thermalize.

Kirkpatrick also provides a correlation for the fraction of energy imparted into the ions (the remainder
going to electrons):

fi =
ATe

ATe + 25E0
=

Te
Te + 25E0/A

(26)

where E0 is the particle’s initial energy in MeV and A is its atomic mass. This relation is used to split energy
deposited into the mesh into the ion species and the electrons in the 3T model implemented in Lumos.

10

5.3 Trubnikov Stopping Power

An implementation of analytic approximations given in the NRL Plasma Formulary [7], originally developed
by Trubnikov [1] is provided by LUMOS. In this model, the energy loss of the particle is computing using
either of the relations given in Equation 27. In Equations 27-35, α denotes the charged particle (also referred
to as the test particle) traveling through an ensemble of β-type particles. The variables m, e, n, T , and
v represent the mass, charge, number density, temperature, and speed of a particle or species ensemble
respectively. The constants ε0 and k are the permittivity of free space and Bolzmann constants respectively.
The relaxation must be computed for every β-type particle in the plasma. In a DT fusion plasma, species
of interest includes 2D+, 3T+, e−, and may include additional species.

d

dt
v2
α = −νεv2

α (27)

νε = 2

(
mα

mβ
ψ(x)− ψ′(x)

)
ν0 (28)

ν0 =
e2
αe

2
βλαβnβ

4πε20m
2
αv

3
α

(29)

x =
mβv

2
α

2kTβ
(30)

ψ(ξ) =
2√
π

∫ ξ

0

√
t

et
dt (31)

The Coulomb logarithm, λαβ , is typically expressed as

λαβ = ln

(
λD
r⊥

)
(32)

where λD is the Debye length:

λD =

(
1

ε0k

∑
γ

nγe
2
γ

Tγ

)−1/2

(33)

where γ represents electrons and all ion species and r⊥ is

r⊥ = max

(
eαeβ

4πε0mαβ ū2
,

h̄

2mαβ ū

)
(34)

where h̄ is the Planck constant, ū is the average relative speed of the charged particle with respect to the
field particles, and

mαβ =
mαmβ

mα +mβ
. (35)

An exact solution to the relaxation methods given in Equation 27 is known and implemented in LUMOS.
The exact solutions are used by default but the user may enable first order approximations by setting
approximate = 1 under the trubnikov node. The intention is to allow the user to study the impact first
order approximation has on the solution quality. Understanding this is important because a first order
approximation is used for all other transport models in the absence of an exact solution.

5.4 Li-Petrasso Stopping Power

The Li-Petrasso stopping power model [16] is a modification of the Trubnikov model with extra corrections
to allow better fits for high energy particles. The Li-Petrasso model defines stopping power (using the same
α-β notation used to describe the Trubnikov model)

dE

dx
= − (Zαe)

2

v2
α

ω2
β

[
G(x) lnλαβ + Θ(x) ln(1.123

√
x)
]

(36)

11

where

G(ξ) = ψ(ξ)− mβ

mα

[
dψ(ξ)

dξ
− 1

λαβ

(
ψ(ξ) +

dψ(ξ)

dξ

)]
(37)

and

Θ(ξ) =

{
1, ξ > 1

0, ξ ≤ 1
(38)

In practice, the Li-Petrasso model has approximately the same runtime as other analytic models but
exhibits better behavior over a wider range of plasma conditions so it is often the recommended starting
point for new calculations. If users require a more accurate stopping power model, they must utilize the
tabular tables of pre-computed stopping power data available.

5.5 Tabular Stopping Power

The tabular stopping power model uses stopping powers computed using the method described by Brown,
Preston, and Singleton [8]. The method is described more completely in an earlier report [9]. The analytic
method is very expensive to compute on the fly, so it is tabularized in a series of data tables. These data
tables are available on the yellow network in the directory /usr/projects/data/nuclear/mc/dedx and a
series of memos describing the file format, contents, and usage is available in the same location.

The data read is done in three sweeps. The first sweep generates and runs a command to output the
contents of the data folder to a text file. The text file is named ”cpt dir.tmp” by default and deleted when
LUMOS terminates. This file indicates which data files need to be read in subsequent processing. The second
sweep iterates over all data files and reads in the size of each data table. At this point, no data is actually
read in, only the number of energy bins, density bins, temperature bins, and number of isotopes present in
each data file. This information is used to size the relevant arrays before the final sweep. The final sweep
iterates over all data files and reads in the actual data. First, the bin values for the file’s energy by density
by temperature matrices are read in. Next the electron stopping power is read in. Finally, the code iterates
over all ion species in the file and reads in their stopping powers.

The format of a single data file is given in Table 3. The horizontal rules are merely guides to help break
the structure into logical sections. The ”chg ” preface indicates a variable of the charged particle; these
variables are defined once per data file. The ”bkg ” prefaced variables indicate a background plasma specie
and must be repeated for all species in the data file. Unfortunately, the data is stored as plain ASCII text
with a 120 character line limit which requires additional logic to navigate that is omitted in this report.

Since the data is drawn from a tabular source, errors can occur in a number of different ways. LUMOS
supports two variables that specify how different failure modes are handled. The type fail mode variable
specifies how the code will behave if the user requests a charged particle interaction for which no data table
exists. This occurs if either: 1) the charged particle has no corresponding data file or 2) the data file has
no data for the ion specie being interacted with. The table fail mode variable specifies how the code will
behave if an appropriate data table exists but the data point is off the table. The default for both modes is to
immediately throw a fatal error but users can instead request that such values are either ignored (contributing
zero stopping power) or kill the particle (by contributing infinite stopping power). Additionally, tables can
be clipped so that data points off the table will get the nearest value on the table.

The data table contains data at discrete points in phase space so interpolation is required for an arbitrary
point. The memos describing the use of the data tables specify that log-log-log interpolation should be used.
Since the tabular data uses a grid logarithmically spaced along each dimension, an equation can be used to
rapidly calculate the index of the lower bound rather than searching. The index of the lower energy bounding
the bin containing E is computed using Equation 39 where ∆ζ is the difference (in log space) between any
two neighboring bins. The density and temperature bounds are computed analogously.

index =

⌊
ln(E)− ln(Emin)

∆ζ

⌋
(39)

12

Table 3: Tabular Data Format

Variable Type Dimension

chg zaid int 1
chg z real 1
chg a real 1
chg m real 1
num e int 1
num n int 1
num t int 1

energy real num e
density real num n
temperature real num t

elec dedx real num e × num n × num t

bkg types int 1
DO j = 1, bkg types

bkg zaid(j) int 1
bkg z(j) real 1
bkg a(j) real 1
bkg m(j) real 1
iso dedx(j) real num e × num n × num t

6 Rendering and Analysis

The charged particle physics package has two main modes of output for the user. The first is output to
Ensight. The ChargedParticle type inherits from EnsGPart which automatically gives it the ability to be
rendered in Ensight. The second mode of output is in the form of a text file containing the state of all
particles. This text file is generated whenever the CHARGEDUMP event executes.

Ensight is the main tool used for visualizing, analyzing, and debugging the charged particles. Charged
particles inherit from the EnsGPart class which has the routines needed to output the particle state to an
Ensight file.

To save charged particle data in an Ensight file, the user needs to specify each charged particle node as
the particleparts variable and each aliased output variable as the vars variable as shown in Listing 3.
Additionally, the user may specify iproj = 1 which will additionally output the particles projected onto
the mesh (useful in 1-D and 2-D).

Listing 3: Charged Particle Ensight Output Example

mk / g l o b a l / . . . / c h a r g e d p t c l s (charged1)
a l i a s ptcl mev ptcl mev
a l i a s p t c l f p t c l f

mk +source
. . . .

mk +transpor t
. . . .

mk / g l o b a l /mesh/ output / en s i gh t
f i l e p a t h = ” ./ en s i gh t ”
p a r t i c l e p a r t s = ” charged1 ”
i p r o j = 1
vars = ” ptcl mev ” ” p t c l f ”

During the development of the charged particle capability, the need for a output mode that was inde-

13

pendent of the MPI data transport became apparent. As particles move across processors, the ordering of
particles is no longer guaranteed to remain consistent across runs. Therefore, the CHARGEDUMP event was
created. In response to the CHARGEDUMP event, the code outputs a text file containing debug parameters
for all particles.

The first column of the output file is a unique particle identification number. Each particle’s id is
10 000 000P +q where P is the processor that created the particle and q is the number of particles generated
by that processor before it. Each processor writes a file with the state of its particles. These files are then
combined and sorted based on the first column (particle id number). This file is then unique and independent
of the order MPI passes particles between processors. The combined and sorted file can then be used as the
standard validation file for the test suite that verifies the charged particle package.

The output file from the CHARGEDUMP event is also useful for postprocessing analysis. Since the
data is stored as a matrix of human-readable ASCII text, analysis with postprocessing software is simple.
Distributions can be plotted and compared across different problem setups.

7 Test Suite

A new test suite of problems to verify the correctness of the charged particle capability has been added to
LUMOS’s existing test suite. To the extent possible, tests are designed such that an analytic solution is
available for comparison. Currently, all tests supporting the charged particle capability perform verification
of the models presented in Sections 4 and 5. These tests ensure that the particles behave as expected and
that all models give similar results under the same conditions. Some of the references in Section 5 include
their own validation tests of an individual model (or the model was later validated by independent efforts)
but no additional validation tests have been done of the current implementation.

Some of the key tests that verify the integration between the charged particle modeling and the hydrody-
namics as described in Section 2 include cpt 2d mixgas[2,3,4], cpt 2d amr, cpt 2d sphere, and cpt 3d reflect.
The cpt 2d mixgas tests ensure that charged particle physics integrates correctly with atomically mixed ma-
terials that often arise in problems of interest. The cpt 2d amr and cpt 3d reflect tests ensure that charged
particles correctly respond to adaptive mesh refinement and boundary conditions respectively. Finally, cpt -
2d sphere tests the charged particle physics in a simple integrated test designed to mock up a compressed
2D axisymmetric ICF capsule. Each test contributes to the confidence of a specific package. Currently,
nearly one hundred tests run in the nightly regression suite used to ensure that no recent code changes
have resulted in unexpected changes to results. These tests, together, give high confidence that the charged
particle transport package is working as intended.

8 Future Work

The charged particle capability in LUMOS is still under development and a number of key features are
expected to be added in the future. The main addition expected in the near future is the introduction of
the Jayenne library for charged particle transport. Additionally, new radiation transport capabilities are
expected; these new radiation transport packages are implemented in the LUMOS package alongside the
charged particle transport and will fully integrate into the rest of Lumos, including the charged particle
physics.

Jayenne is a standalone library developed by the CCS-2 group at Los Alamos National Laboratory. The
Jayenne package leverages the work CCS-2 has already done developing robust particle transport methods in
previous work which will enable sophisticated variance reduction and additional physics options not currently
avaialble in the native CPT implementation.

References

[1] Trubnikov, B. A. and Yavlinskii, Y. N. (1965). Sov. Phys. JETP, 21: 167–168.

[2] Kirkpatrick, R. C. and Wheeler, J. A. (1981). The Physics of DT Ignition In Small Fusion Targets.
Nuclear Fusion, 21(3): 389–401.

14

[3] Cooper, Ralph S. and Evans, Foster. (March 1975). Alpha particle energy absorption in a reaction DT
sphere. The Physics of Fluids, 18(3): 332–334.

[4] Cross Sections Evaluation Working Group. (June 2009). ENDF-6 Formats Manual. National Nuclear
Data Center, Brookhaven National Laboratory. BNL-90365-2009.

[5] Miley, G. H., Towner, H., and Ivich, N. Cross section parameterization and coefficients University of
Illinois. C00-28818-17.

[6] Flash Center for Computational Science (2017). FLASH User Guide, Version 4.5. University of Chicago.

[7] Naval Research Laboratory (2018). NRL: Plasma Formulary. NRL/PU/6790–18-640.

[8] L. S. Brown, D. L. Preston, and R. L. Singleton, Jr. (2006). Plasma stopping power including subleading
order. Journal of Physics A: Mathematical and General, 39: 4667–4670.

[9] L. S. Brown, D. L. Preston, and R. L. Singleton Jr. (2005). Charged particle motion in a highly ionized
plasma. Physics Reports, 410(4):237–333.

[10] A. Rigby, J. Katz, A. F. A. Bott, and T. G. White (2018). Implementation of a Faraday rotation
diagnostic at the OMEGA laser facility. High Power Laser Science and Engineering, 6: E49.

[11] A. Dubey, C. Daley, J. ZuHone, P. M. Ricker, K. Weide, and C. Graziani (2012). Imposing a Lagrangian
Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH. The Astrophysical Journal
Supplement 201(2):11.

[12] F. B. Brown and Y. Nagaya (2002). The MCNP5 Random Number Generator. LA-UR-02-3782.

[13] Jiankui Yuan and Gregory Moses (2003). Alpha Particle Fusion Reaction Product Modeling in DRACO.
APS Meeting, Albuquerque, NM. Oct. 27-31.

[14] Holec, M., Limpouch, J., Liska, R., and Weber, S. (2017). High-order discontinuous Galerkin non-
local transport and energy equations scheme for radiation hydrodynamics. International Journal for
Numerical Methods in Fluids 83(10):779–797.

[15] Falk, K., et al (2018). Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense
Matter. Physical Review Letters 120(2).

[16] Chi-Kang Li and Richard D. Petrasso (1993). Charged-particle stopping powers in inertial confinement
fusion plasmas. Physical Review Letters 70

15

